Installations- und Betriebshandbuch

NGI-1000 Digitale Zündanlage

Modell NGI-1000 IOM 10-17

1.0 BESCHREIBUNG

- 1.1 Dieses Handbuch enthält die Installations- und Bedienungsanleitung für das Zündanlage Altronic NGI-1000. Vor dem Arbeiten mit der NGI-1000 sollte der Benutzer dieses Handbuch vollständig gelesen haben.
- 1.2 Die Zündanlage Altronic NGI-1000 besteht ausfolgenden Bauteilen:
 - NGI-1000, Teilenummern 791973-x
 - Impulsaufnehmer oder Hall-Sensor (einer pro Anlage)
 - Eingangskabelbaum (einer pro Anlage)
 - Ausgangskabelbaum (einer pro Anlage)
 - Zündspulen (eine pro Zylinder)
- 1.3 Die Altronic NGI-1000 benötigt eine Batterie oder eine geeignete Gleichspannungsversorgung mit einer Nennspannung von 24 VDC (siehe Abb. 2). NGI-1000 verstärkt die Eingangsspannung, um einen Kondensator aufzuladen. Das Mikroprozessorgesteuerter NGI-1000 leitet die gespeicherte Energie des Kondensators entsprechend der programmierten Abfolge zu den Zündspulen. Bohrungen (eine pro Zylinder) in einer mit Nockenwellendrehzahl rotierenden Scheibe geben die Stellung der Nockenwelle an die Zündsteuerung NGI-1000 weiter. Auf die Bohrung die dem letzten Zylinder in der Zündfolge zugeteilt ist folgt eine weitere Bohrung (Indexbohrung). Das Indexsignal signalisiert das eine neue Umdrehung beginnt. Der Zündzeitpunkt kann mit Hilfe eines Handschalters, durch ein analoges Eingangssignal und/oder durch die Drehzahl des Motors variiert werden.
- 1.4 Die Altronic NGI-1000 kann als Einzel- oder als Doppelzündungsanlage bis zu sechszehn (16) Zylinder steuern. In den vorliegenden Anleitungen werden Einzelzündungsanwendungen für 8 und 16 Zylinder Anwendungen mit dem Altronic NGI-1000 Steuergerät beschrieben (Teilenummern 791973-x).
- 1.5 NGI-1000 wird im automatischen Erkennungsmodus geliefert und ist werksseitig für eine mit Kurbelwellendrehzahl funktionierende Triggerscheibe eingerichtet. Die Programmierung erfolgt über die PC-kompatible NGI-1000 Terminalsoftware, (siehe Abschnitt 10) die unter http://www.Altronic-Ilc.com auf der Seite Downloads im Bereich Terminal Programms verfügbar und runterzuladen ist. Programmiert wird das Gerät über die mit Modbus RS-485 kompatible Kommunikationsschnittstelle.

2.0 **NGI-1000**

- 2.1 Wählen Sie für NGI-1000 einen Platz der mindestens 600 mm (24 Zoll) von den Zündspulen, den Zündkerzen und den Zündkerzenleitungen entfernt ist. Zudem sollte die Außentemperatur des Montageort vom Altronic NGI 1000 Steuergrätes nicht über 85 °C (185 °F) sein. Vorzugsweise sollte das Steuergerät im Luftstrom des Kühlventilators (sofern vorhanden) sitzen.
- 2.2 Befestigen Sie das Altronic NGI-1000 auf einer ebenen Fläche. Die Befestigung sollte mit den eigens dafür mitgelieferten Schwingungsisolatoren erfolgen. Die Abmessungen vom NGI-1000 entnehmen Sie bitte der Abb. 1.

3.0 AUFNEHMERSENSOR – KURBELWELLENSCHEIBE

3.1 Die mit geeigneten Lochmuster vorbereitete Triggerscheibe wird so montiert, dass sie mit Nockenwellendrehzahl läuft. Die Scheibe muss aus einem magnetischen Werkstoff bestehen und einen Durchmesser von mindestens 100 mm (4,0 Zoll) haben. Abb. 3 zeigt den von der Anzahl der Zylinder abhängigen Lochabstand. Beachten Sie die Drehrichtung der Scheibe! Der Zündwinkel ist extrem wichtig, da er die Genauigkeit des grundlegenden Zündzeitpunkts der Anglage festlegt.

HINWEIS: Einige MAN-Motoren haben einen 12 mm-Gewindeanschluss. In dem Fall Altronic Aufnehmer 791035-2 oder 791041-3 verwenden.

WARNUNG: Das Nichteinhalten dieser Anleitungen kann zum unsachgemäßen Betrieb der Anlage führen, die Bediener und in der Nähe befindliches Personal verletzten könnte.

- 3.2 Bestimmen Sie einen Montageort des Sensors (Pick Up). Befestigen Sie den Aufnehmer mit einer stabilen Halterung. Die Abmessungen der 3/4 Zoll - 16 UNF Pick Up's entnehmen Sie bitte der Abb. 3.
- 3.3 Stellen Sie den Motor mit dem Zylinder Nr. 1 in den frühst möglichen Zündzeitpunkt. Bringen Sie die Triggerscheibe unter Beachtung der Drehrichtung in die in Abb. 4 gezeigte Stellung ("A" 1. Zylinder in Zündfolge) gegenüber dem Aufnehmer.
- 3.4 Regulieren Sie die Befestigungsmutter des Sensors so, dass einer der folgenden Spezifikationen entsprechender Luftspalt eingestellt wird:
 - Für Impulsaufnehmer 791015-1 und 791016-2 muss der Spalt 0,50 mm ± 0,12 mm (0,020 Zoll ± 0,005 Zoll) betragen.
 - Für Impulsaufnehmer 791035-2 und 791041-3 (12 mm-Gewinde) muss der Spalt 0,35 mm ± 0,10 mm (0,014 Zoll ± 0,004 Zoll) betragen.

Die Mitte des Sensors muss beim Drehen der Scheibe mit der Mitte jedes Bohrlochs übereinstimmen.

- 3.5 Stecken Sie den 2-poligen Aufnehmerstecker fest in den Gegenstecker des Kabelstrangs von NGI-1000 ein.
- 3.6 Sie können optional auch Halleffektsensoren oder spannungsversorgte Impulsaufnehmer verwenden. Beide erfordern drei Drähte und senden ein Übertragungssignal von null oder fünf Volt. Bei der Verwendung einer dieser Optionen muss das Kontrollkästchen "Powered Pick Up" (Spannungsversorgter Aufnehmer) aktiviert sein. NUR bei der Option "Spannungsversorgter Aufnehmer" kann "Edge sensed" (Flanke erkannt) ausgewählt werden. Für "Rising Edge" (Flanke steigend) ist das Kontrollkästchen deaktiviert und für "Falling Edge" (Flanke fallend) aktiviert (blau).

4.0 ZÜNDSPULEN

- 4.1 Verwenden Sie nur die aufgeführten Altronic Spulen:
 - UNGESCHIRMT: 501061, 591010FLANSCH: 591012, 591018
- 4.2 Montieren Sie die Zündspulen möglichst nah an den Zündkerzen. Beschränken Sie die Länge der Zündleitung für die hohe Spannung dabei auf das Mindestmaß und die Temperaturen während des Betriebs auf unter 95 °C (200 °F).

5.0 PRIMÄRE VERDRAHTUNG

5.1 Das Zündsteuergerät NGI-1000 benötigt eine Batterie oder eine andere Gleichspannungsquelle mit einer Nennspannung von 24 VDC. Anschlussdetails für die Gleichspannungsquelle finden Sie in Abb. 2.

HINWEIS: Die
Aufnehmersensorkabel
mindestens 50 mm (2 Zoll)
von der primären
Spulenverkabelung und
mindestens 200 mm (8 Zoll)
von den
Zündkerzenleitungen
fernhalten.

HINWEIS: Beim Wechseln von spannungsfrei zu spannungsversorgt und umgekehrt muss das Gerät neu gestartet werden.

Prüfen Sie den spannungsversorgten Aufnehmer für einen normal hohen oder niedrigen Betrieb. Die steigende Flanke wird bei normal niedrig führend und bei normal hoch verzögert sein. Eine falsche Auswahl wird die Zündung bei der Taktung der Indikatorlänge in der Scheibe beeinträchtigen.

WARNUNG: Die gezeigte Schaltung ist für die gängigste Motorzündfolge. Gemäß der tatsächlichen Motorzündfolge an die Zündspulen anschließen.

5.2 Dokumentieren Sie die Zündfolge und Verdrahtung mithilfe der folgenden Tabellen.

791973-8	A	В	С	D	Ε	F	K	L								
Zylinder NR.																
791973-12	Α	В	С	D	Ε	F	K	L	М	N	P	R				
Zylinder NR.																
791973-16	Α	В	С	D	Е	F	Κ	Г	М	Ν	Р	R	S	T	C	٧
Zylinder NR.																

HINWEIS: Bei bestimmten 12- und 16-Zylinder-Motoren muss beim Ausrichten der Scheibe und des Aufnehmers ein anderer Zylinder als Nr. 1 verwendet werden (normalerweise der zweite Zylinder in der Zündfolge).

Die Erdungsleitung ist bei allen Kabelbäumen die Leitung mit der Bezeichnung "J".

- 5.3 Die Anschlusskabel für die ungeschirmten Zündspulen sollten mit Ringkabelschuhen enden. Verwenden Sie Anschlusskabel der Spezifikation AWG16 (1,5 mm²) und Ringösen mit einem 5 mm Loch. Die Ringösen sollten entweder mit dem Draht verlötet oder mit einem geeigneten Crimpwerkzeug gequetscht werden. Schützen Sie die primäre Verdrahtung vor Beschädigungen, Schwingungen und Temperaturen über 95 °C (200 °F).
- 5.4 Schaltungsdetails für das analoge Taktsignal finden Sie in Abb. 7.
- 5.5 Vergewissern Sie sich, dass die mehrpoligen Anschlussstecker ganz in die am NGI-1000 angeschlossenen Gegenaufnahmen eingesteckt sind.

HINWEIS: Die primäre Verdrahtung mindestens 50 mm (2 Zoll) von den Zündkerzenleitungen fernhalten.

6.0 ABSCHALTVERDRAHTUNG

- 6.1 Das Zündsteuergerät NGI-1000 wird durch die Unterbrechung der Gleichspannungsversorgung abgeschaltet. Verwenden Sie dazu einen Schalter oder ein Relais mit Kontakten, für eine Nennspannung von 24 VDC Gleichstrom und 12 Ampere ausgelegt sind. (siehe Abb. 2)
- 6.2 Die Altronic NGI-1000 kann auch durch die Verwendung der "G-Ader" des Ausgangskabelbaums abgeschaltet werden. Legen Sie zum Abschalten des NGI 1000 Steuergerätes die "G-Ader" des Ausgangskabelbaums auf Masse. Abgeschaltet wird das NGI-1000 etwa 0,1 Ampere von der Spannungsquelle aufnehmen.

7.0 SEKUNDÄRE VERDRAHTUNG

- 7.1 Bei ungeschirmten Zündspulen sollten Zündkerzenkabel aus Silikonisolierten 7 mm-Zündleitungen mit passenden Silikon-/Teflonsteckern für die Zündkerzen gefertigt sein.
- 7.2 Halten Sie Zündkerzenkabel so kurz wie möglich und mindestens 50 mm (2 Zoll) von allen geerdeten Motorteilen fern. Verwenden Sie in tiefen Zündkerzenschächten starre, isolierte Verlängerungen, die aus den Zündkerzenschächten herausragen.
- 7.3 Die Verwendung eines klaren Silikonschmiermittels (wie Dow Corning DC-4, G.E. G-623 oder GC Electronics Z5) wird für alle Anschlüsse und Kappen für die hohe Spannung empfohlen. Dieses schützt vor eindringender Feuchtigkeit und atmosphärisch bedingter Korrosion.

HINWEIS: Die Eingangsstromleitung NICHT durch eine Reihe von Schaltern führen, die im Normalzustand geschlossen sind.

HINWEIS: NGI-1000 sollte nicht zur Versorgung von zündungsversorgten Bedieninstrumenten verwendet werden.

HINWEIS: Die Verwendung von Zündkerzenwiderstandskabe I oder (entweder an der Zündkerze oder Spule montierten) individuellen 5.000 Ohm-Widerständen wird empfohlen.

8.0 BETRIEB

8.1 ZÜNDVERZÖGERUNG:

Beim Anlassen wird es zu einer Verzögerung von zwei Scheibenumdrehungen kommen – nachdem die Spannungsversorgung AN ist und der Motor zu drehen beginnt – vor das die NGI-1000 Ausgangsleistung für die Zündspulen erbringt. Diese Verzögerung dient zur Identifikation des Aufnehmerindexlochs zwecks Sicherstellung der richtigen Synchronisation mit dem Motor. Sie können der Programmierung eine längere Verzögerung mit mehr Umdrehungen hinzufügen, um den Motor zu Spülen. Siehe Abschnitt 10.12.

HINWEIS: Bei der Erstinbetriebnahme nach der Anlageninstallation muß der Zündzeitpunkt bei geschlossenen Gasventilen geprüft werden.

8.2 MANUELLER TAKTSCHALTER:

Unter einer weißen Kunststoffkappe am Gehäuse der NGI-1000 befindet sich ein manueller Zündzeitpunkt (ZZP) Schalter. Stellen Sie den Zündzeitpunkt mithilfe einer Zündlichtpistole bei laufendem Motor auf die gewünschte Stellung. Die weiße Kunststoffkappe soll nach der Einstellung des Zündzeitpunktes immer wieder aufgeschraubt werden. Hinter den Positionen 0-7 können Verzögerungen von 1° und größer programmiert werden. In der Stellung "7" läuft der Motor mit dem frühesten Zündzeitpunkt, die Stellungen 6,5,4,3,2,1 und 0 verzögern den ZZP um den jeweils programmierten Wert. Die Stellung "0" entspricht der vollständigen Verzögerung.

8.3 ANALOGE TAKTANPASSUNG:

Eine analoge Zündzeitpunktverstellung der NGI-1000 erfolgt auf zweierlei Wegen:

- Ein zwischen den Klemmen E und F des Eingangskabelbaums angeschlossenes 0 - 1.000 Ohm-Potentiometer
- Ein auf die Klemmen F und G des Eingangskabelbaums aufgeschaltetes Signal von 4 20 mA

8.4 DREHZAHLABHÄNGIGE ZÜNDZEITPUNKTVERSTELLUNG:

DIE NGI-1000 wird mit einer drehzahlabhängigen Zündzeitpunkteinstellung ausgeliefert. Wobei bei 0 U/min eine Verzögerung von 6° und beim Anstieg der Drehzahl um 100 U/min eine Verschiebung um 1° erfolgt. Somit ist ab > 600 U/min keine Verzögerung programmiert (Abb. 7). Diese programmierte Verzögerung addiert sich zu den hinterlegten Verzögerungen des manuellen Schalters (Abschnitt 8.2) und der analogen Zündzeitpunktverstellung (Abschnitt 8.3). Eine Änderung dieser Einstellung ist jederzeit möglich.

HINWEIS: bei laufenden Motor den manuellen ZZP-Schalter NICHT von der Stellung 7 auf 0 oder von 0 auf 7 stellen. Diese Zündzeitpunktverstellung kann zur Abschaltung oder Beschädigung des Motors führen.

HINWEIS: Die analoge Taktverzögerung wird zur über den manuellen Taktschalter festgelegten Verzögerung hinzugefügt (siehe Abschnitt 8.2 weiter oben und Abb. 7).

HINWEIS: Beim Prüfen mit unterschiedlichen Geschwindigkeiten wird der Takt gemäß der angegebenen Kurve für Umdrehungen pro Minute variieren.

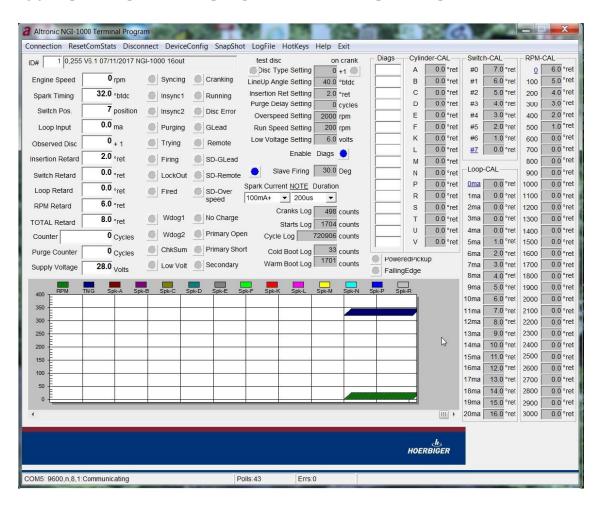
9.0 BENUTZERDEFINIERTE EINRICHTUNG VON NGI-1000

9.1 Über das PC-Terminalprogramm können Sie das Zündsteuergerät NGI-1000 benutzerdefiniert einrichten. Die NGI-1000 nutzt die patentierte Varispark-Technologie, kann aber nach wie vor einen klassischen CD-Funken erzeugen. Zur Optimierung der Energieeffizienz können Sie im Terminalprogramm die Sekundärenergie verändern. Der Prozess ist intuitiv und unkompliziert, da die Einheiten in mA und µS angezeigt werden.

9.2 FUNKENSTROM:

Beim Einrichten des Funkenstroms können Sie entweder einen klassischen CD-Funken oder einen Varispark-Funken wählen, die beide mit 185 V-Gleichstrom funktionieren. In der Dropdown-Liste des Fensters stehen verschiedene Ströme zur Verfügung. Jeder angezeigte mA Wert kennzeichnet den Strom im Funken. Jeder Wert mit dem Zeichen "+" stellt den mA-Wert anfänglich bereit, um dann über die im nächsten Schritt ausgewählte Dauer hinweg linear anzusteigen.

9.3 FUNKENDAUER:


Zum Einstellen der Funkendauer steht ein zweites Dropdown-Menü zur Verfügung. Jede Funkendauer wird in μ S dargestellt und mit dem Funkenstrom abgeglichen. NGI-1000 wird den ausgewählten Funkenstrom für die Dauer bis zu maximal 250W halten.

9.4 MOTORLEISTUNG:

Es ist wichtig, den Funkenstrom und die Funkendauer auf die Motoranforderungen abzustimmen. Durch die Anwendung des optimalen Funkenprofils stellen Sie sicher, dass Zündkerzenverschleiß und Motorleistung Ihren Erwartungen entsprechen. Zu berücksichtigen sind Zündkerzenwechselintervalle, die Hochspannung an der Zündkerze am Ende der Lebensdauer und den Bedarf an Zündkerzen über die gesamte Motorlast. Empfohlen wird, Fehlzündungen unter allen Lastbedingungen zu prüfen und den Funken nach Bedarf über die Strom- und die Funkendauer einzustellen. Profile mit einem höheren Strom und einer kürzeren Dauer werden viel Anfangsenergie zum Zünden eines weniger guten Gasgemischs gewählt. Ein länger andauernder Funken wird hingegen helfen, ein Gemisch länger im Umdrehungszyklus brennen zu lassen.

10.0 FUNKTIONEN DES PC-TERMINALDISPLAYS

Connection	Connection (Verbindung)
ResetComStats	ResetComStats (Kommunikationsstatistik zurücksetzen)
Disconnect	Disconnect (Trennen)
DeviceConfig	DeviceConfig (Gerätekonfiguration)
SnapShot	SnapShot (Momentaufnahme)
LogFile	LogFile (Protokolldatei)
HotKeys	HotKeys (Hotkeys)
Help	Help (Hilfe)
Exit	Exit (Beenden)
ID#	ID# (ID-Nr.)
Engine Speed	Engine Speed (Motordrehzahl)
Rpm	rpm (U/min)

C 1 T' '	
Spark Timing	Spark Timing (Zündzeitpunkt)
°btdc	°btdc (vor oberem Totpunkt)
Switch Pos.	Switch Pos. (Schalterstellung)
position	position (Position)
Loop imput	Loop input (Schleifeneingang)
ma	Ma (milli Ampere)
Observed Disc	Observed Disc (Beobachtete Scheibe)
Insertion Retard	Insertion Retard (Interne Verzögerung)
Switch Retard	Switch Retard (Schalter Verzögerung)
Loop Retard	Loop Retard (Schleifenverzögerung)
RPM Retard	RPM Retard (Drehzahl-Verzögerungen)
TOTAL Retard	TOTAL Retard (Gesamt Verzögerung)
°ret	°ret (Verzögerung)
Counter	Counter (Zähler)
Purge Counter	Purge Counter (Spühl Zeit)
Cycles	Cycles (Zyklen)
Supply Voltage	Supply Voltage (Versorgungsspannung)
Volts	Volts (Volt)
Syncing	Syncing (Synchronisation)
Insync1	Insync1 (1 Indexsynchronisation)
Insync2	Insync2 (2 Indexsynchronisationen)
Purging	Purging (Spülen)
Trying	Trying (Versuch)
Firing	Firing (Zünden)
LockOut	LockOut (Sperre)
Fired	Fired (Gezündet)
Wdog1	Wdog1 (Wächter1)
Wdog2	Wdog2 (Wächter2)
ChkSum	ChkSum (Prüfsumme)
Low Volt	Low Volt (Niedrige Spannung)
Cranking	Cranking (Anlassen)
Running	Running (Betrieb)
Disc Error	Disc Error (Scheibenfehler)
Glead	Glead (G-Kabel)
Remote	Remote (Fernbedienung)
SD-Glead	SD-Glead (Abschaltung G-Leitung)
Remote	Remote (Fernbedienung)
SD-Glead	SD-Glead (Abschaltung G-Kabel)
SD-Remote	SD-Remote (Abschaltung über Fernbedienung)
SD_Over speed	SD-Overspeed (Abschaltung Überdrehzahl)
No charge	No charge (Keine Aufladung)
Primary Open	Primary open (Primär offen)
Primary Short	Primary Short (Primar kurz)
·	Secondary (Sekundar)
Secondary Test Disc	Test disc (Test Scheibe)
Test Disc	On crank (Kurbelwelle)
On crank	,
Disc Type Setting	Disc Type Setting (Scheiben Typ Einstellung)
LineUp Angle Setting	LineUp Angle Setting (Ausrichtung, Winkel, Einstellung)
Insertion ret Setting	Insertion ret Setting (Interne Verzögerung Einstellung)
Purge Delay Setting	Purge Delay Setting (Spül Verzögerung Einstellung)
Overspeed Setting	Overspeed Setting (Überdrehzahl Einstellung)
Run speed Setting	Run speed Setting (Laufgeschwindigkeit Einstellung)
Low Voltage Setting	Low Voltage Setting (Niedrige Spannungs Einstellung)
Enable	Enable (Ermöglichen)
Diags	Diags (Diagnose aktivieren)
Slave Firing	Slave Firing 30.0 Deg (Slave-Zündung 30,0 Grad)
Spark Current / Duration	Spark Current NOTE Duration (Funkenstrom / Dauer)
100 mA+	100 mA+
200 μs	200 μs
Cranks Log	Cranks Log (Anlass Protokoll)
Starts Log	Starts Log (Start Protokoll)

		n	
a	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

Cycle Log	Cyle Log (Zyklus Protokoll)
Cold Boot Log	Cold Boot Log (Kaltstart Protokoll)
Warm Boot Log	Warm Boot Log (Warmstart Protokoll)
Counts	Counts (Zählungen)
PoweredPickup	PoweredPickup (Spannungsversorgter Aufnehmer)
FallingEdge	FallingEdge (Flanke fallend)
Diags	Diags (Diagnosen)
Cylinder-CAL	Cylinder-CAL (Zylinder Einstellung)
°ret	°ret (Verzögerung)
Switch-CAL	Switch-CAL (Schalter Einstellung)
#1 - 7	#1-7 (Nr. 1 - 7)
Loop CAL	Loop-CAL (Schleifen Einstellung)
0ma-20ma	0 mA - 20 mA
RPM-CAL	RPM-CAL (U/min-Einstellung)
RPM	RPM (U/min)
TM G	TMG (Zeitpunkt)
Spk-A	Spk-A (Funke A)
Spk-B	Spk-B (Funke B)
Spk-C	Spk-C (Funke C)
Spk-D	Spk-D (Funke D)
Spk-E	Spk-E (Funke E)
Spk-F	Spk-F (Funke F)
Spk-K	Spk-K (Funke K)
Spk-L	Spk-L (Funke L)
Spk-M	Spk-M (Funke M)
Spk-N	Spk-N (Funke N)
Spk-P	Spk-P (Funke P)
Spk-R	Spk-R (Funke R)

10.1 ENGINE SPEED (MOTORGESCHWINDIGKEIT):

Gibt die aktuelle Geschwindigkeit des Motors in Umdrehungen pro Minute basierend auf dem Scheibensignal an.

10.2 SPARK TIMING (Zündzeitpunkt):

Gibt den Zündzeitpunkt des Motors in Grad vor dem oberen Totpunkt (v. O.T.) an. Dieser Wert entspricht der Einstellung (LineUp Angle – Total Retard) Geringe Unterschiede zwischen diesem Wert und dem mithilfe einer Zündlichtpistole ermitteltem Zündzeitpunkt können auftreten, da der angegebene Winkel unter "LineUp Angle" geringfügig von der tatsächlichen Winkelstellung des Motors und dem Empfang des Eingangsimpulsereignisses über den Pick Up abweichen kann. In dem Fall sollte der Zündzeitpunkt durch ändern des Wertes unter dem LineUp Angle an den tatsächlich ermittelten Wert beim abblitzen des Motors angeglichen werden.

10.3 SWITCH POSITION (SCHALTERSTELLUNG):

Gibt die aktuelle Stellung des manuellen Zündzeitpunkt-Schalter am NGI-1000 Gehäuse an.

10.4 (LOOP INPUT) SCHLEIFENEINGANG:

Gibt den Wert der externen Eingangsstromschleife an.

10.5 OBSERVED DISC (BEOBACHTETE SCHEIBE):

Gibt die Anzahl der Triggerung an (Löcher oder -Erhebungen), die die NGI-1000 derzeit erkennt.

10.6 INSERTION RETARD (EINSPEISUNGSVERZÖGERUNG):

Gibt den derzeitig eingestellten Wert der internen Verzögerung an.

10.7 SWITCH RETARD (SCHALTVERZÖGERUNG):

Gibt die derzeitig eingestellte Verzögerung an, die durch die manuelle Schalterposition hinzugefügt wird.

10.8 LOOP RETARD (SCHLEIFENVERZÖGERUNG):

Gibt die Verzögerung an, die über die in der Loop Cal. Tabelle eingestellten Werte hinzugefügt werden.

10.9 RPM RETARD (U/min-VERZÖGERUNG):

Gibt die tatsächliche Verzögerung an, die durch die Drehzahl des Motors verursacht wird. Abzulesen und zu programmieren unter der RPM Cal Kurve.

10.10 TOTAL RETARD (GESAMTVERZÖGERUNG):

Gibt die derzeitige Gesamtverzögerung an. Der Wert ist die Summe der Einspeisungs-, Schalt-, Schleifen- und U/min-Verzögerungen.

10.11 COUNTER (ZÄHLER):

Gibt die Anzahl der seit dem letzten Motorstart registrierten Scheibenumdrehungen an (Motorzyklen).

10.12 PURGE COUNTER (SPÜLZÄHLER):

Gibt bei einer Inbetriebsetzung die Anzahl der verbleibenden Entlüftungszyklen an, bevor die Ausgänge aktiviert werden.

10.13 SUPPLY VOLTAGE (VERSORGUNGSSPANNUNG):

Gibt das Niveau der gemessenen Gleichstrom-Versorgungsspannung für NGI-1000 an.

10.14 SPARK REF. (FUNKENBEZEICHNUNG) (A, B, C USW.):

Gibt die aktuelle Funkenbezeichnung für jeden Zylinder an.

10.15 SYNCING (SYNCHRONISATION):

Gibt bei Rot an, dass die Scheibenumdrehung erkannt wurde und die Synchronisation stattfindet.

10.16 INSYNC1 (1 INDEXSYNCHRONISATION):

Gibt bei Rot an, dass der Indexeingang einmal erkannt wurde.

10.17 INSYNC2 (2 INDEXSYNCHRONISATIONEN):

Gibt bei Rot an, dass der Index ein zweites Mal erkannt wurde und die Zündung für das weitere Vorgehen bereit ist.

10.18 PURGING (ENTLÜFTUNG):

Gibt bei Rot an, dass die Synchronisation abgeschlossen wurde und der

Countdown für den Spülzyklus läuft.

10.19 TRYING (VERSUCH):

Gibt bei Rot an, dass das NGI-1000 versucht, die Ausgänge zu zünden, aber noch kein richtiges Primärentladungsereignis vorgekommen ist.

10.20 FIRING (ZÜNDUNG):

Gibt bei Rot an, dass das NGI-1000 die Primärausgänge erfolgreich zündet.

10.21 LOCKOUT (SPERRE):

Gibt bei Rot an, dass die Zündung bis mindestens 5 Sekunden nach "Motor Stop" gesperrt ist.

10.22 CRANKING (ANLASSEN):

Gibt bei Rot an, dass die Drehzahl unter der eingestellten Laufgeschwindigkeit liegt.

10.23 RUNNING (BETRIEB):

Gibt bei Rot an, dass die Drehzahl über der eingestellten Laufgeschwindigkeit liegt.

10.24 DISC ERROR (SCHEIBENFEHLER):

Gibt bei Rot an, dass das die Überwachung (Test Disc) aktiviert ist und die erkannte Triggerung nicht dem ausgewählten SCHEIBENTYP (z. B. 6+1) entspricht.

10.25 GLEAD (G-LEITUNG):

Gibt bei Rot an, dass die G-Leitung geerdet ist.

10.26 REMOTE (REMOTE):

Gibt bei Rot an, dass ein Remotebefehl für das serielle Abschalten aktiv ist.

10.27 SD-GLEAD (ABSCHALTUNG G-LEITUNG):

Gibt bei Rot an, dass aufgrund einer geerdeten G-Leitung eine Abschaltung stattfand.

10.28 SD-REMOTE (ABSCHALTUNG REMOTE):

Gibt bei Rot an, dass aufgrund eines Remotebefehls für das serielle Abschalten eine Abschaltung stattfand.

10.29 SD-OVERSPEED (ABSCHALTUNG ÜBERDREH):

Gibt bei Rot an, dass der Motor die eingestellte Überdrehzahl erreicht und aufgrund dessen eine Abschaltung stattfand.

10.30 WDOG1 (WÄCHTER1):

Gibt bei Rot an, dass der Mikroprozessor seit dem Einschalten der Zündung neu gestartet wurde.

10.31 WDOG2 (WÄCHTER2):

Gibt bei Rot an, dass der Mikroprozessor gerade neu startet. Ignorieren Sie das erste Blinken bei der ersten Verbindung.

10.32 CHKSUM (PRÜFSUMME):

Gibt bei Rot, dass in der Firmware des Geräts ein Prüfsummenfehler aufgetreten ist.

10.33 LOW VOLT (NIEDRIGE SPANNUNG):

Gibt bei Rot an, dass die Eingangsspannung kleiner oder gleich der eingestellten niedrigen Spannung ist.

10.34 NO CHARGE (KEINE LADUNG):

Gibt bei Rot an, dass der primäre Speicherkondensator in den letzten 2 Sekunden nicht richtig geladen hat.

10.35 PRIMARY OPEN (PRIMÄR OFFEN):

Gibt bei Rot an, dass in letzten 2 Sekunden eine offene Primärverbindung erkannt wurde.

10.36 PRIMARY SHORT (PRIMÄR KURZ):

Gibt bei Rot an, dass in den letzten 2 Sekunden ein Kurzschluss in der Primärverdrahtung erkannt wurde.

10.37 SECONDARY OPEN (SEKUNDÄR OFFEN):

Gibt bei Rot an, dass in den letzten 2 Sekunden eine offene Sekundärverkabelung (Zündkabel) erkannt wurde.

HINWEIS: Die Polarität des spannungsversorgten

Aufnehmers für einen

niedrigen Betrieb prüfen.

normal hohen oder

Der Zündtakt kann beeinträchtigt werden.

10.38 CRANKS LOG (ANLASSPROTOKOLL):

Gibt die Gesamtanzahl der von NGI-1000 erkannten Anlassversuche an.

10.39 STARTS LOG (STARTPROTOKOLL):

Gibt die Gesamtanzahl der von der NGI-1000 gemäß der eingestellten Laufgeschwindigkeit erkannten erfolgreichen Starts an.

10.40 CYCLE LOG (ZYKLUSPROTOKOLL):

Gibt die Gesamtanzahl der von der NGI-1000 erkannten Motorzyklen an.

10.41 COLD BOOT LOG (KALTSTARTPROTOKOLL):

Gibt an, wie oft die Gleichstrom-Eingangsspannung ausgeschaltet wurde.

10.42 WARM BOOT LOG (WARMSTARTPROTOKOLL):

Gibt an, wie oft der Mikroprozessor ohne einen vollständigen Energieverlust neu gestartet hat.

10.43 GRAPHIC DISPLAY (GRAFIKANZEIGE):

Das NGI-1000 Terminalprogramm beinhaltet eine grafische Echtzeitanzeige der sekundären Diagnosenummern, des Zündzeitpunktes (y-Achse : 10) und der Motordrehzahl (y-Achse x 10).

10.44 POWERED PICKUP (SPANNUNGSVERSORGTER AUFNEHMER):

Steht für die Optionen Hall-Sensor oder spannungsversorgter Impulsaufnehmer zur Auswahl. Wird bei Aktivierung blau.

10.45 FALLING EDGE (FLANKE FALLEND):

Steht bei Verwendung der Option spannungsversorgter Aufnehmer zur Auswahl. Wird bei Aktivierung blau.

11.0 BLINKCODES DER DIAGNOSE-LED VON NGI-1000

11.1 ZÜNDUNGSBLINKCODES VON NGI-1000:

Ist das Statuskennzeichen LED Diags (LED-Diagnose) im NGI-1000 Terminalprogramm aktiviert (blau), können Sie den Status der NGI-1000 am Blinkmuster der LED (Diagnostic) auf der Vorderseite der NGI-1000 ablesen, ohne das Terminalprogramm benutzen zu müssen. Nachfolgend beschrieben ist der Status der NGI 1000 mit der Anzahl der Blinksignale. Die LED ist zwischen jeder Blinksequenz etwa 2 Sekunden lang AN. Das Blinken erfolgt gleichmäßig und schneller.

112 LED-SIGNALE BEI STEHENDEM MOTOR:

AN – DAUERHAFT = **BEREIT** (Neustart oder letzter Startversuch abgebrochen)

AN – 1 x BLINKEN – AN = BEI LETZTER UMDREHUNG GEZÜNDET (wegen Abwürgen gestoppt)

AN – 2 x BLINKEN – AN = ABSCHALTUNG (durch Erdung von G-LEITUNG bei Betrieb)

AN - 3 x BLINKEN - AN = ABSCHALTUNG (durch serielle Remoteanfrage bei Betrieb)

AN – 4 x BLINKEN – AN = ABSCHALTUNG (durch Überdrehzahl bei Betrieb)

 $AN - 5 \times BLINKEN - AN = FALSCHES SCHEIBENMUSTER$

AN – 6 x BLINKEN – AN = NIEDRIGE VERSORGUNGSSPANNUNG (unter Grenzwert bei Betrieb)

113 LED-SIGNALE BEIM ANLASSEN DES MOTORS (drehend, aber noch unter Betriebs-U/min):

AN/AUS/AN/AUS = ENTLÜFTUNG (erster Eingangsimpuls aus, wechselt bei jeder Umdrehung der Entlüftung)

AN – DAUERHAFT = NORMALE ZÜNDUNG (U/min unter Betriebssollwert)

AUS = FALSCHES SCHEIBENMUSTER ERKANNT

11.4 LED-SIGNALE BEI LAUFENDEM MOTOR (zündend und über Laufgeschwindigkeit):

AN – DAUERHAFT = NORMALE ZÜNDUNG (keine Diagnosemeldung)

AN – 1 x BLINKEN – AN = ALARM SEKUNDÄR OFFEN AN – 2 x BLINKEN – AN = ALARM PRIMÄR KURZ

AN – 3 x BLINKEN – AN = ALARM PRIMÄR OFFEN

AN – 4 x BLINKEN – AN = ALARM KEINE LADUNG
AN – 6 x BLINKEN – AN = NIEDRIGE VERSORGUNGSSPANNUNG

12.0 RS-485-KOMMUNIKATIONEN, MODBUS RTU

12.1 NGI-1000 entspricht dem Modbus RTU-Standard. Die Anzahl der maximal gleichzeitig lesbaren Register ist auf 32 beschränkt. Die Anzahl der maximal gleichzeitig lesbaren Booleschen Variablen ist auf 256 beschränkt. Alle Kommunikationen erfolgen mit 8 Datenbits, keine Parität und 1 Stoppbit. Die Baud-Rate beträgt 9600.

Die MODBUS-Adressenliste finden Sie im Anschluss:

122 2 Lese-/Schreib-Coil-Bits Aufnehmereinstellungen

ADRESSE	FUNKTION
00007	Trigger Flanke STEIGEND=0 FALLEND=1
80000	Pick Up Typ PASSIV=0 SPANNUNGSVERSORGT=1

123 24 schreibgeschützte Status-Bits, lesbar in Vielfachen von 8 Bits ab 8-Bit-Grenzen

ADRESSE	FUNKTION		
10001	Synchronisation		
10002	1 Indexsynchronisation	on	
10003	2 Indexsynchronisationen		
10004	Entlüftung		
10005	Versuch		
10006	Zündung		
10007	Sperre		
10008	GEZÜNDET		
10009	ANLASSEN		
10010	BETRIEB		
10011	FALSCHE SCHEIBE		
10012	G-Leitung	Abschaltung geerdet	
10013	Remote	Abschaltung vorhanden	
10014	G-Leitung	Abschaltung protokolliert	
10015	Remote	Abschaltung protokolliert	
10016	Überdreh	Abschaltung protokolliert	
10017	WÄCHTER1	Zurücksetzen gesperrt	
10018	WÄCHTER2	Zurücksetzen Ereignis	
10019	Prüfsummenfehler		
10020	NIEDRIGE Versorgungsspannung		
10021	Keine Ladung		
10022	Primär offen		
10023	Primär kurz		
10024	Sekundär offen		

WARNUNG: Schreibbare
Modbus-Register wie
"OXXXX" und "4XXXX"
verweisen direkt auf den
nichtflüchtigen Speicher
CD200D. Nichtflüchtige
Speicher haben eine
Lebensdauer von ~100.000
Schreib-/Löschzyklen. Bei
jedem in diese Register
schreibenden Gerät muss
darauf geachtet werden,
dass die maximale Anzahl an
Schreib-/Löschzyklen nicht
überschritten wird.

124 Schreibgeschützte Statusregister

45556			
ADRESSE	FUNKTION		
30001	Eingangsbit Spiegel	10016–10001	
30002	Eingangsbit Spiegel	10032–10017	
30003	Eingangsbit Spiegel	10048–10033	
30004	Eingangsbit Spiegel	10064–10049	
30005	U/min		
30006	Takt	xxx,x GRAD	mit Vorzeichen
30007	Schalter	Stellung	1–8
30008	Aktueller Schleifeneingang	xx,x mA	
30009	Scheibe	Beobachtet X+	1
30010	Einspeisung	Verzögerung	xxx,x Grad
30011	Schalter	Verzögerung	xxx,x Grad
30012	Schleife	Verzögerung	xxx,x Grad
30013	U/min	Verzögerung	xxx,x Grad
30014	Gesamt	Verzögerung	xxx,x Grad
30015	Zykluszähler HO		
30016	Zykluszähler NI	х	x,x Volt
30017	Versorgungsspannur	ng	
30018	Funkenbezeichnung	Ausgang A	
30019	Funkenbezeichnung	Ausgang B	
30020	Funkenbezeichnung Ausgang C		
30021	Funkenbezeichnung	Ausgang D	
30022	Funkenbezeichnung	Ausgang E	
30023	Funkenbezeichnung	Ausgang F	
30024	Funkenbezeichnung	Ausgang K	
30025	Funkenbezeichnung	Ausgang L	
30026	Funkenbezeichnung	Ausgang M	
30027	Funkenbezeichnung	Ausgang N	
30028	Funkenbezeichnung	Ausgang P	
30029	Funkenbezeichnung	Ausgang R	
30030	Funkenbezeichnung	Ausgang S	
30031	Funkenbezeichnung	Ausgang T	
30032	Funkenbezeichnung	Ausgang U	
30033	Funkenbezeichnung	Ausgang V	
30034	Entlüftungsverzögeru	ıng Indexrückwä	rtszähler
30035	Verteiler MUX Code	0–15	
30036	TASTATURBEFEHL		
30037	Periodenvorteiler		
30038	Periode höchstwertig	ste 16 BITS	
30039	Periode niederwertig	ste 16 BITS	
30040	ZündungsStat:Verzö	gerungsStat	

12.5 8 les-/schreibbare Konfigurations-Bits, unterstützt nur einfaches Schreiben, lesbar in Vielfachen von 8 Bits ab 8-Bit-Grenzen

ADRESSE	FUNKTION
1	SCHEIBE AN NOCKE=0 KURBELWELLE=1
2	TEST FÜR RICHTIGE SCHEIBE JA=1
3	SEKUNDÄRE DIAGNOSEN AKTIVIEREN JA=1
4	RESERVIERT
5	RESERVIERT
6	SLAVE
7	RESERVIERT
8	AUS = IMPULS-Aufnehmer AN = HALL-SENSOR-Aufnehmer

12.6 4 les-/schreibbare Register Spiegel-Coil-Bits

ADRESSE	FUNKTION
40001	REG40001=Coil-Bits 00016-00001
40002	REG40002=Coil-Bits 00032-00017
40003	REG40003=Coil-Bits 00048-00033
40004	REG40004=Coil-Bits 00064-00049

12.7 8 les-/schreibbare Register für Anwendung

40005 Scheibe+1 2,3,4,5,6,7,8,9,10,12 40006 Scheibenausrichtung auf oberen Totpunkt xx,x GRAD 40007 Einspeisungsverzögerung MIN=2,0 GRAD xx,x 40008 Entlüftungsverzögerung Zyklen 0-255 40009 U/min Überdrehzahleinstellung 40010 U/min Kurbelwelle zu Betriebsgrenzwert	ADRESSE	FUNKTION
40007 Einspeisungsverzögerung MIN=2,0 GRAD xx,x 40008 Entlüftungsverzögerung Zyklen 0-255 40009 U/min Überdrehzahleinstellung 40010 U/min Kurbelwelle zu Betriebsgrenzwert	40005	Scheibe+1 2,3,4,5,6,7,8,9,10,12
40008 Entlüftungsverzögerung Zyklen 0-255 40009 U/min Überdrehzahleinstellung 40010 U/min Kurbelwelle zu Betriebsgrenzwert	40006	Scheibenausrichtung auf oberen Totpunkt xx,x GRAD
40009 U/min Überdrehzahleinstellung 40010 U/min Kurbelwelle zu Betriebsgrenzwert	40007	Einspeisungsverzögerung MIN=2,0 GRAD xx,x
40010 U/min Kurbelwelle zu Betriebsgrenzwert	40008	Entlüftungsverzögerung Zyklen 0-255
-	40009	U/min Überdrehzahleinstellung
	40010	U/min Kurbelwelle zu Betriebsgrenzwert
40011 Grenze niedrige Spannungsversorgung xx,x V	40011	Grenze niedrige Spannungsversorgung xx,x V
40012 SLAVE WINKEL xx,x GRAD	40012	SLAVE WINKEL xx,x GRAD

128 2 les-/schreibbare Register für Funkensteuerung

ADRESSE	FUNKTION
40013	Funkendauersteuerung 200 μS=0 250 μS=1 1.000 μS=16
40014	Funkenstromsteuerung C.D.=0; 50mA=1,50mA+=2 200mA=7

129 16 les-/schreibbare Register für Zylinderverzögerungstabelle

ADRESSE	FUNKTION		
40017	AUSGANG A	EXTRA VERZÖGERUNG	GRAD
40018	AUSGANG B	EXTRA VERZÖGERUNG	GRAD
40019	AUSGANG C	EXTRA VERZÖGERUNG	GRAD
40020	AUSGANG D	EXTRA VERZÖGERUNG	GRAD
40021	AUSGANG E	EXTRA VERZÖGERUNG	GRAD
40022	AUSGANG F	EXTRA VERZÖGERUNG	GRAD
40023	AUSGANG K	EXTRA VERZÖGERUNG	GRAD
40024	AUSGANG L	EXTRA VERZÖGERUNG	GRAD
40025	AUSGANG M	EXTRA VERZÖGERUNG	GRAD

12.9 16 les-/schreibbare Register für Zylinderverzögerungstabelle (Fortsetzung)

ADRESSE	FUNKTION		
40026	AUSGANG N	EXTRA VERZÖGERUNG	GRAD
40027	AUSGANG P	EXTRA VERZÖGERUNG	GRAD
40028	AUSGANG R	EXTRA VERZÖGERUNG	GRAD
40029	AUSGANG S	EXTRA VERZÖGERUNG	GRAD
40030	AUSGANG T	EXTRA VERZÖGERUNG	GRAD
40031	AUSGANG U	EXTRA VERZÖGERUNG	GRAD
40032	AUSGANG V	EXTRA VERZÖGERUNG	GRAD

12.10 8 les-/schreibbare Register für Taktschalterverzögerungstabelle

ADRESSE	FUNKTION
40033	SCHALTERSTELLUNG 0 GRAD
40034	SCHALTERSTELLUNG 1 GRAD
40035	SCHALTERSTELLUNG 2 GRAD
40036	SCHALTERSTELLUNG 3 GRAD
40037	SCHALTERSTELLUNG 4 GRAD
40038	SCHALTERSTELLUNG 5 GRAD
40039	SCHALTERSTELLUNG 6 GRAD
40040	SCHALTERSTELLUNG 7 GRAD

12.11 21 les-/schreibbare Register für Schleifenverzögerungstabelle

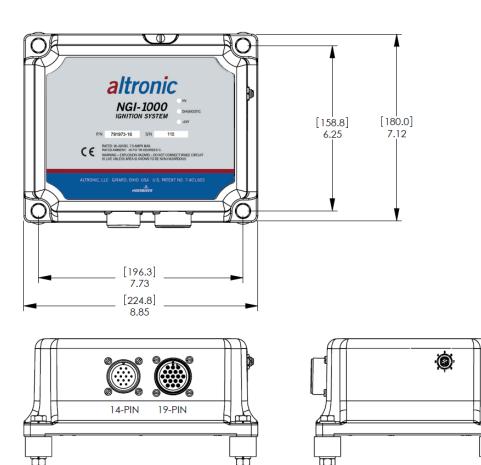
ADRESSE	FUNKTION		
40049	SCHLEIFENVERZÖGERUNG	0 mA 0,00 V	GRAD
40050	SCHLEIFENVERZÖGERUNG	1 mA 0,25 V	GRAD
40051	SCHLEIFENVERZÖGERUNG	2 mA 0,50 V	GRAD
40052	SCHLEIFENVERZÖGERUNG	3 mA 0,75 V	GRAD
40053	SCHLEIFENVERZÖGERUNG	4 mA 1,00 V	GRAD
40054	SCHLEIFENVERZÖGERUNG	5 mA 1,25 V	GRAD
40055	SCHLEIFENVERZÖGERUNG	6 mA 1,50 V	GRAD
40056	SCHLEIFENVERZÖGERUNG	7 mA 1,75 V	GRAD
40057	SCHLEIFENVERZÖGERUNG	8 mA 2,00 V	GRAD
40058	SCHLEIFENVERZÖGERUNG	9 mA 2,25 V	GRAD
40059	SCHLEIFENVERZÖGERUNG	10 mA 2,50 V	GRAD
40060	SCHLEIFENVERZÖGERUNG	11 mA 2,75 V	GRAD
40061	SCHLEIFENVERZÖGERUNG	12 mA 3,00 V	GRAD
40062	SCHLEIFENVERZÖGERUNG	13 mA 3,25 V	GRAD
40063	SCHLEIFENVERZÖGERUNG	14 mA 3,50 V	GRAD
40064	SCHLEIFENVERZÖGERUNG	15 mA 3,75 V	GRAD
40065	SCHLEIFENVERZÖGERUNG	16 mA 4,00 V	GRAD
40066	SCHLEIFENVERZÖGERUNG	17 mA 4,25 V	GRAD
40067	SCHLEIFENVERZÖGERUNG	18 mA 4,50 V	GRAD
40068	SCHLEIFENVERZÖGERUNG	19 mA 4,75 V	GRAD
40069	SCHLEIFENVERZÖGERUNG	20 mA 5,00 V	GRAD

12.12 31 les-/schreibbare Register für U/min-Verzögerungstabelle

ADRESSE	FUNKTION	
40070	U/Min-VERZÖGERUNGS bei 0000 U/min	GRAD
40071	U/Min-VERZÖGERUNGS bei 0100 U/min	GRAD
40072	U/Min-VERZÖGERUNGS bei 0200 U/min	GRAD
40073	U/Min-VERZÖGERUNGS bei 0300 U/min	GRAD
40074	U/Min-VERZÖGERUNGS bei 0400 U/min	GRAD
40075	U/Min-VERZÖGERUNGS bei 0500 U/min	GRAD
40076	U/Min-VERZÖGERUNGS bei 0600 U/min	GRAD
40077	U/Min-VERZÖGERUNGS bei 0700 U/min	GRAD
40078	U/Min-VERZÖGERUNGS bei 0800 U/min	GRAD
40079	U/Min-VERZÖGERUNGS bei 0900 U/min	GRAD
40080	U/Min-VERZÖGERUNGS bei 1000 U/min	GRAD
40081	U/Min-VERZÖGERUNGS bei 1100 U/min	GRAD
40082	U/Min-VERZÖGERUNGS bei 1200 U/min	GRAD
40083	U/Min-VERZÖGERUNGS bei 1300 U/min	GRAD
40084	U/Min-VERZÖGERUNGS bei 1400 U/min	GRAD
40085	U/Min-VERZÖGERUNGS bei 1500 U/min	GRAD
40086	U/Min-VERZÖGERUNGS bei 1600 U/min	GRAD
40087	U/Min-VERZÖGERUNGS bei 1700 U/min	GRAD
40088	U/Min-VERZÖGERUNGS bei 1800 U/min	GRAD
40089	U/Min-VERZÖGERUNGS bei 1900 U/min	GRAD
40090	U/Min-VERZÖGERUNGS bei 2000 U/min	GRAD
40091	U/Min-VERZÖGERUNGS bei 2100 U/min	GRAD
40092	U/Min-VERZÖGERUNGS bei 2200 U/min	GRAD
40093	U/Min-VERZÖGERUNGS bei 2300 U/min	GRAD
40094	U/Min-VERZÖGERUNGS bei 2400 U/min	GRAD
40095	U/Min-VERZÖGERUNGS bei 2500 U/min	GRAD
40096	U/Min-VERZÖGERUNGS bei 2600 U/min	GRAD
40097	U/Min-VERZÖGERUNGS bei 2700 U/min	GRAD
40098	U/Min-VERZÖGERUNGS bei 2800 U/min	GRAD
40099	U/Min-VERZÖGERUNGS bei 2900 U/min	GRAD
40100	U/Min-VERZÖGERUNGS bei 3000 U/min	GRAD

12.13 7 les-/schreibbare sonstige Register

ADRESSE	FUNKTION
40122	Anlasszähler
40123	Startzähler
40124	Zykluszähler HOCH
40125	Zykluszähler NIEDRIG
40126	REG40005 MSB=BAUD LSB=KNOTEN-ID festgelegt 9600n81:node1
40127	Kaltstart (Einschalten) Zählerstand
40128	Warmstart (Zurücksetzen) Zählerstand


12.14 NGI-1000 Funkensteuerungstabelle

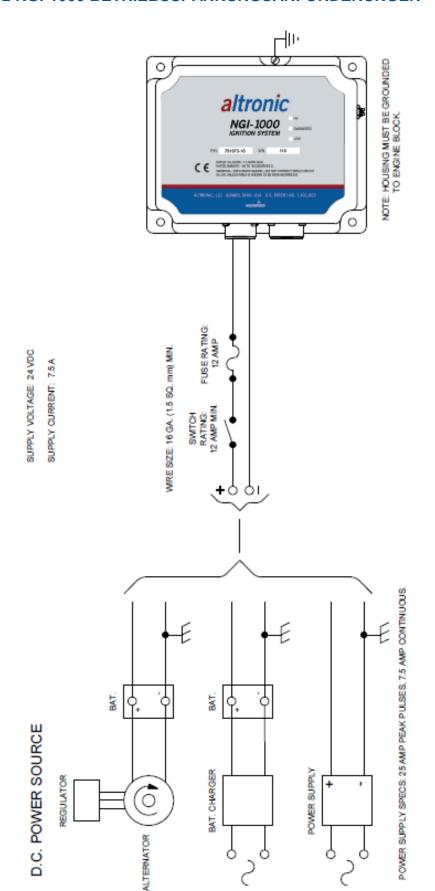
REG40014	Modbus	0	1	2	3	4	5	6	7
	Spark	CD	50mA	50mA+	100mA	100mA+	150mA	150mA+	200mA
REG4	0013								
Modbus	Time (uS)								
1	150		X	Х	X	Х	X	Х	Х
2	200		X	Х	X	Х	Х	X	Х
3	250		Х	X	X	Х	Х	Х	Х
4	300		Χ	Х	X	Х	X	X	Х
5	350		X	Х	Х	Х	Х	X	Х
6	400		Х	Х	Х	Х	Х	Х	Х
7	450		X	X	X	Х	Х	X	
8	500		Х	Х	Х	Х	Х	Х	
9	550		X	Х	X	Х	Х		
10	600	N/A	X	Х	Х	Х	Х		
11	650	197	X	Х	Х	Х	X		
12	700		X	Х	Х	Х	Х		
13	750		Х	Х	Х	Х			
14	800		X	Х	Х	Х			
15	850		X	Х	X				
16	900		Х	Х					
17	950		Х	Х		diesem Bereich		b des sicheren b beschränkt sich	das
18	1000		X	Х		itisch selbst. Fun		hl mit ausstehen	
19	1050		X	X	Turikeridader	•			
20	1100		Х	Х					

CD200/CD200D/CD200EVS

ABB. 1 NGI-1000 ABMESSUNGEN UND SPEZIFIKATIONEN, 791973-X

	14-POLIGER STECKER
ANSCHLUSS	LEITERPLATTENBOHRUNG
POL	
Α	MPA
В	MPB
С	485 +
D	FEHLER
Е	+5 V
F	4-20 IN
G	4-20 -
Н	485 -
I	NICHT ANGESCHLOSSEN
J	NICHT ANGESCHLOSSEN
K	+24 STROMVERSORGUNG
L	SPANNUNGSVERSORGTER
	AUFNEHMER + SV
М	SPANNUNGSVERSORGTER
	AUFNEHMER EINGANG
N	STROMVERSORGUNG/SPANNU
	NGS-VERSORGTER
	AUFNEHMER ERDE

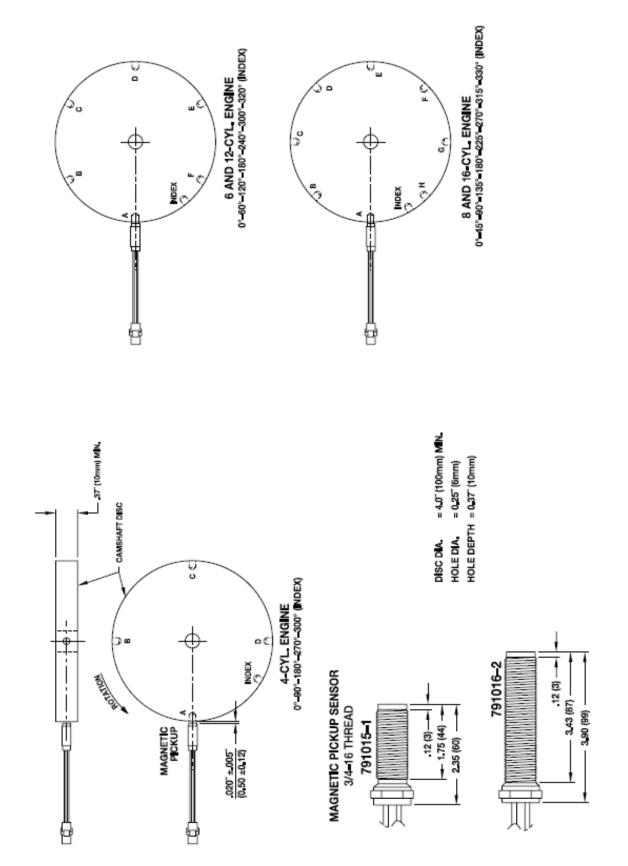
BETRIEBSTEMPERATUR: -40 °C BIS +85 °C


LAGERTEMPERATUR: -40 °C BIS +105°C

EINGANGSSPANNUNG: 24 V GLEICHSTROM

AUSGANGSSPANNUNG: 185 V GLEICHSTROM

ABB. 2 NGI-1000 BETRIEBSSPANNUNGSANFORDERUNGEN


NOTE

1. INFORMATION IS PER ONE (1) NGI-1000 SYSTEM. FOR MULTIPLY REQUIREMENTS BY NUMBER OF SYSTEMS.

 POWER SUPPLY NEGATIVE MUST BE GROUNDED TO ENGINE BLOCK.

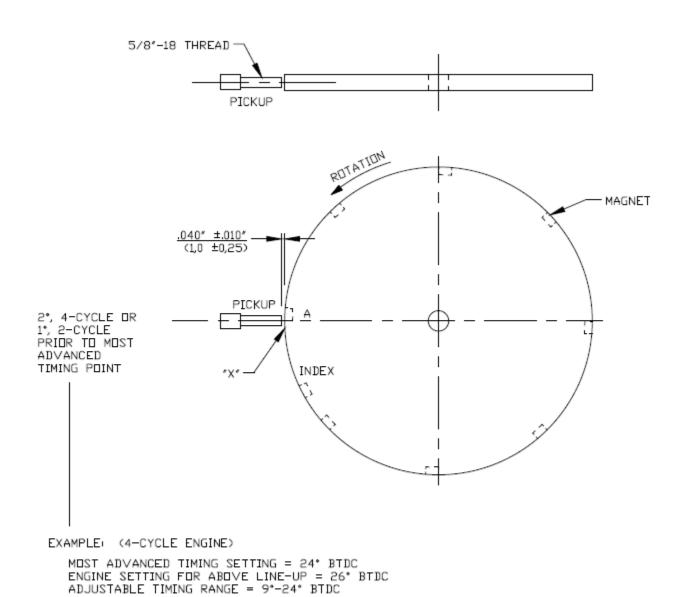
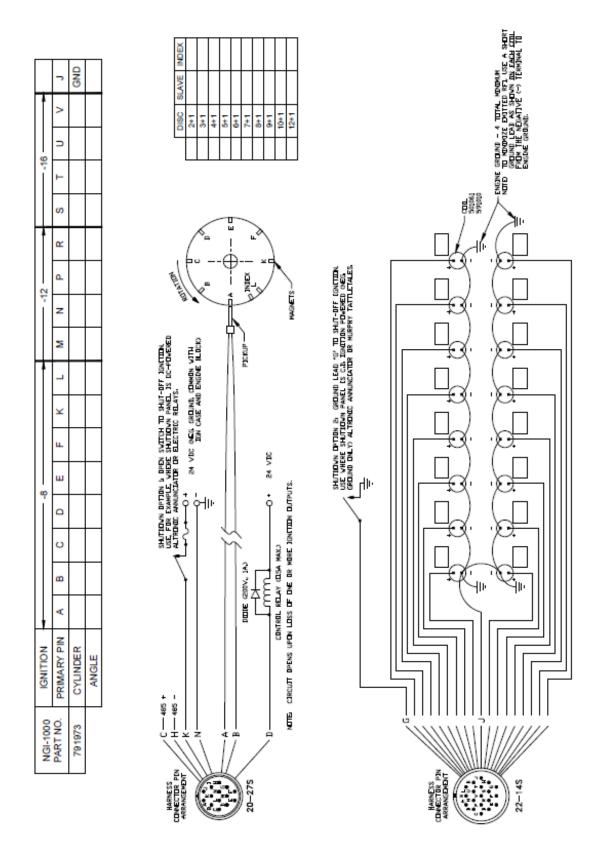


ABB. 3 NGI-1000 IMPULSAUFNEHMER UND SCHEIBENLOCHDETAIL


ABB. 4 NGI-1000 AUFNEHMER UND SCHEIBENINSTALLATION

NOTE: (8 + 1) MAGNET DISC SHOWN.

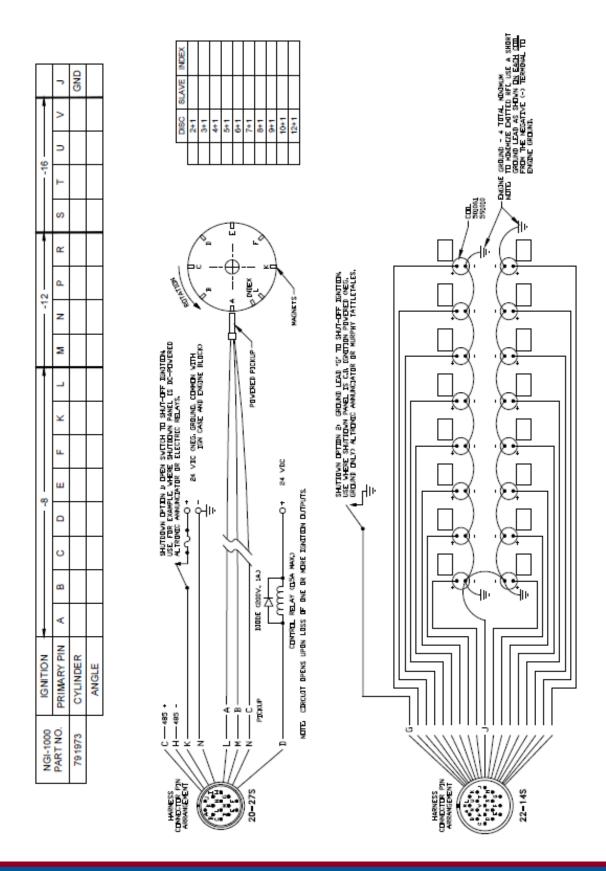
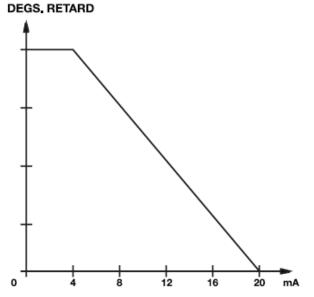


ABB. 5 SCHALTPLANVORLAGE FÜR EINZELZÜNDUNGSANLAGE MIT IMPULSAUFNEHMER


ABB. 6 SCHALTPLANVORLAGE FÜR EINZELZÜNDUNGSANLAGE MIT SPANNUNGSVERSORGTEM AUFNEHMER

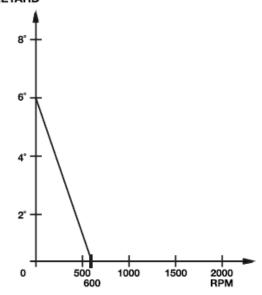


ABB. 7 NGI-1000 SCHALTUNG FÜR ANALOGES TAKTSIGNAL

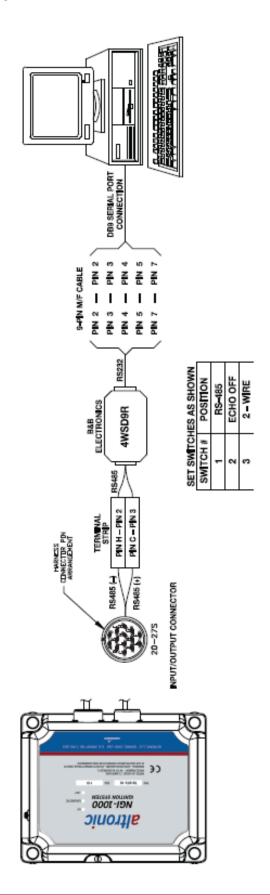
EXAMPLE ANALOG TIMING CURVE - ENGINE DEGREES

EXAMPLE SPEED TIMING CURVE - ENGINE DEGREES DEGS, RETARD

14-PIN INPUT/CONTROL CONNECTOR WIRING OPTION 1 — POTENTIOMETER CONTROL

[PIN A	PIN B	PNC	PIN D	PNE	PNF	PIN G	PNH	PNK	PIN L	PIN M	PIN N
	MPU INPUT	MPU INPUT	485+	FAULT OUT	+ 5VDC 100mA MAX	ANALOG +	ANALOG -	485-	24VDC	HEA	HEB	Power Supply/Powered Pickup Ground

0-1,000 OHM POTENTIOMETER


OPTION 2 - 4-20mA CONTROL

PIN A	PIN B	PINC	PIN D	PINE	PIN F	PIN G	PIN H	PINK	PNL	PNM	PINN
MPU INPUT	MPU INPUT	485+	FAULT OUT	+ 5VDC 100mA MAX	ANALOG +	ANALOG	485=	24VDC	HEA	HEB	Power Supply/Powered Pickup Ground
					¥	9					
4_20m∆											

NOTE: INPUT CONNECTOR CIRCUIT AT PIN "D" OPENS WHEN ENGINE RPM EXCEEDS OVERSPEED SETTING. THE CIRCUIT REMAINS OPEN UNTIL ROTATION STOPS FOR APPROXIMATELY 4 SECONDS.

ABB. 8 PC ZU NGI-1000

